LPR Surface Sediment COPC Mapping Approach

Presentation to EPA Region 2 LPR CPG Modeling Team 9/26/2013

Initial Surface Mapping – RM 1-7

Shoals (Group 1)

- Former navigation channel
 - Partition based on 1949 to 2010 deposition rates
 - No historical deposition (Group 2)
 - Little to moderate historical deposition (Group 3)
 - High historical deposition (Group 4)

Motivation for Partitioning the Former Navigational Channel

Interpolation Approaches

- Shoals (Group 1)
 - Use Thiessen polygons
- Former navigation channel
 - No historical deposition (Group 2)
 - low concentrations → use averages
 - Little to moderate historical deposition (Group 3)
 - highly variable concentrations
 use Thiessen polygons
 - High historical deposition (Group 4)
 - average concentrations use averages

Surface Mapping Example – RM 3.5 - 5

EPA Geomorphic Regions

Surface Mapping Example – RM 3.5 - 5

The channel was delineated based on historical deposition rate (depth difference between 1949 and 2010)

- •Group 1 Shoals, delineated separately
- •Group 2 No historical deposition
- •Group 3 Little to moderate historical deposition
- •Group 4 High historical deposition

EPA Geomorphic Regions

Groupings

Group 2 - No historical deposition

Group 3 - Little to moderate historical deposition

Group 4 – High historical deposition

0.25 0.5 Mile

Surface Mapping Example – RM 3.5 - 5 Polygons delineated: In shoals and Group 3 → Thiessen polygons In Group 2 and 4 → averages by reaches Concentrations are then assigned based on data and interpolation rules **Surface Mapped Concentrations** 2,3,7,8-TCDD (ppt) <200 200-500 500-1000 >1000 2,3,7,8-TCDD (ppt) <200 200-500 500-1000 0.25 0.5 Miles >1000

Arithmetic Averages by Initial Groupings

Arithmetic Averages by Study

- 2012 CPG SSP cores driving high concentrations in 2008-2012 dataset
- Next step: Explore cores to see what is driving high concentrations
 - Grouping
 - Bathymetry changes

LEGEND

2012 SSP Hot Cores

2600 - 10000

10001 - 20000

20001 - 21900

group

1 - Shoals

2 - No Deposition

3 - Low-Moderate Deposition

4 - High Deposition

	CoreID	TCDD-adj (ng/kg)	RM	Group
1	12A-0440	21900	4.5	3
2	12A-0449	15900	6.3	3
3	12A-0427	11700	3.6	3
4	12A-0444	10800	4.6	3
5	12A-0447	2660	5.2	3
6	12A-0413	2600	2.5	1

2378-TCDD Concentration vs 1995 to 2012 Bathymetry Change

Revision of Initial Groups

Initial Groups

Groups	Depositional Characteristics	Concentration Characteristics
Group 1	Shoals	Variable concentrations
Group 2	No historical deposition	Low concentrations
Group 3	Little to moderate historical deposition	Highly variable concentrations
Group 4	High historical deposition	Average concentrations

Groups	Deposition Characteristics	Concentration Characteristics
Group 1	Shoals	Variable concentrations
Group 2	No historical deposition	Low concentrations
Group 3a	Little to moderate historical deposition, ≥1ft erosion 1995 to 2012	Highly variable concentrations, High 2012 SSP cores
Group 3b	Little to moderate historical deposition, <1ft erosion 1995 to 2012	Highly variable concentrations
Group 4	High historical deposition	Average concentrations

Refined Groups

Arithmetic Averages by Revised Groupings

EPA-Requested Information

Areas of Groups

Groups	Deposition Characteristics	Area RM 1 to RM 7 (acres)	Area RM 0 to RM 7.5 (acres)
Group 1	Shoals	155	369
Group 2	No historical deposition	21	21
Group 3a	Little to moderate historical deposition, ≥1ft erosion 1995 to 2012	14	14
Group 3b	Little to moderate historical deposition, <1ft erosion 1995 to 2012	41	41
Group 4	High historical deposition	137	208

EPA-Requested Information

Data Counts & Distributions (log scale)

For Trend Analysis, Divide River into Depositional Regimes Defined by Predicted Bed Elevation Change, 1995 – 2010

Model results for RM0 to RM8 only

(CPG model results as of February 2013)

Mapping Results

Area-Weighted Average Trends (RM 1 to RM 7)

Surface map averaged by model calibration regime (based on ST results as of Feb 2013)

Averaged by 500 ppt target areas (on model grid)

Interpolation Approach above RM 7.5

- Interpolate using Thiessen polygons
 - Separately for silt deposits (based on side scan sonar delineations)
 - For remaining area, separately for
 - Right shoal
 - Left shoal
 - Channel
- Applicable to the 2010 dataset only
 - Due to data coverage, the 1995 surface uses 2010 data outside of approximately RM 1 to RM 7

Mapping Results

Targeted Remedy Evaluation, RM 0-14

Averaging Zone within RM 0-14	Mean 2378-TCDD Concentration (ng/kg)	Mean Tetra-CB Concentration* (ug/kg)
Target areas only (500 ppt ~ 130 acres)	4,920	2,065
Non-target areas only	200	310
All areas, including target areas	880	563
All areas, remediating target areas	172	265
Percent reduction in mean concentration	80%	53%

^{*}Preliminary, subject to revision

Exploration of Alternative Interpolation Approaches

- Motivated by EPA comments on the use of Thiessen polygons and suggestion that CPG explore geostatistical interpolation techniques
- Also based on CPG concern about extrapolation distances in areas with sparse data

Interpolation Alternatives Examined

- Restricting Thiessen polygon extent to distance of spatial correlation (based on variograms)
- Inverse Distance Weighting (IDW)
- Kriging

LPR Variograms for 2,3,7,8-TCDD

RM 10.9 deposit

Straightened river, all data

Mapping Alternative #1

Restricted Thiessen Polygons

- Restricted Thiessen polygon maximum radius to 400 feet, based on 2378-TCDD variogram
- For areas more than 400 feet from any measurement, apply a group mean concentration
 - Necessitated dividing groups into longitudinal RM bins to specify more realistic local means
- Result: an unrealistic surface that is of no use in crafting targeted remedies

Mapping Alternative #1

Restricted Thiessen Polygons

0.0 - 50.0

50.1 - 100.0

100.1 - 200.0

200.1 - 500.0

500.1 - 1000.0

1000.1 - 10000.0

> 10,000

Mapping Alternative #2 Inverse Distance Weighting (IDW)

- Problematic at locations remote from measurements
 - Uses neighboring measurements that are much further away than spatial correlation distance
 - Offers no advantage over Thiessens in this respect
- Team contemplated forcing average concentration in areas without measurements by inserting synthetic data
 - Rejected this because it is without precedent
- Pursued Kriging interpolation instead
 - Kriging also smooths but uses variogram directly

Mapping Alternative #3 Kriging Approach

- Divide groups into longitudinal bins to yield roughly constant means
- Perform ordinary point kriging separately for each group RM bin
 - Interpolate in log-space using straightened river
 - Applying RM10.9 or straightened river variogram
 - Back-transform median (exponentiation)
- Show predicted values in original cartesian coordinates, overlaying the interpolations across all groups/bins

Concerns with Kriging Approach

- Unrealistic smoothing of the surface
- Uncertainty of best approach to transform results from log-space
- Poor cross-validation results (e.g., RM 10.9 bin below)

Comparison of Distributions

Data vs Kriging Interpolation

Comparison of Distributions

Data vs Thiessen Interpolation

Note: Data without corresponding thiessens occur in groups 2 and 4 due to the use of averages for these groups

Conclusions

- Thiessen polygons are favored because this approach performs better in honoring the data distribution
- Suggest using professional judgment to adjust extrapolation distances in areas with sparse data
- Suggest several updates as detailed on following charts

Potential Revisions to Thiessen Approach

- Append "2010" dataset to include 2005 Newark Bay data, which adds some cores to the LPR near RM 0
- Adjust sample coordinates used
 - Apply core centroids for CPG sediment datasets (LRC, FSP2, and SSP), to aid in mapping below surface and for mapping additional COPCs
- Use professional judgment to revisit group assignments for samples near group boundaries
 - Account for uncertainty in sample locations and group boundary delineations
 - Several cores identified for potential reassignment

Potential Revisions to Thiessen Approach

- Use professional judgment to limit Thiessen polygon for samples when appropriate
 - For example, one sample with a high % fines sits in a SSS coarse sediment area, and is the result of multiple sampling attempts
- Incorporate revisions to side scan sonar silt area delineations based on probing and grain size data
- Use Thiessen polygons for all groups
 - Instead of averages for groups 2 and 4

Additional Considerations

- Additional sediment data collected as part of SSP
 2 will provide further information to support:
 - Conceptual Site Model development
 - COPC mapping for CFT Modeling
 - Identification of Target Areas as part of the LPRSA RI/FS
- As further data and information (e.g., SSP 2, RM 10.9) are collected and incorporated as part of an iterative and adaptive process; confidence in further refining target areas and their impact on recovery in the River will increase.